
out-of-tree Documentation
Release latest

Jun 18, 2020

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Installation (from source) . 5
1.3 OS/Distro-specific . 5
1.4 Common . 6

i

ii

out-of-tree Documentation, Release latest

out-of-tree is the kernel {module, exploit} development tool.

out-of-tree was created on the purpose of decreasing complexity of environment for developing, testing and debugging
Linux kernel exploits and out-of-tree kernel modules (that’s why tool got a name “out-of-tree”).

While I’m trying to keep that documentation up-to-date, there may be some missing information. Use out-of-tree
--help-long for checking all features.

If you found anything missed here, please make a pull request or send patches to patch@dumpstack.io.

If you need personal support, your company is interested in the project or you just want to share some thoughts – feel
free to write to root@dumpstack.io.

Contents 1

mailto:patch@dumpstack.io
mailto:root@dumpstack.io

out-of-tree Documentation, Release latest

2 Contents

CHAPTER 1

Contents

Keyword Index

1.1 Introduction

out-of-tree is written in Go, it uses Docker for generating kernel/filesystem images and Qemu for virtualization.

Also it possible to generate kernels from the host system and use the custom one.

out-of-tree supports GNU/Linux (usually it’s tested on NixOS and latest Ubuntu LTS) and macOS. Technically all
systems that supported by Go, Docker, and Qemu must work well. Create the issue if you’ll notice any issue in
integration for your operating system.

All Qemu interaction is stateless.

out-of-tree is allow and require metadata (.out-of-tree.toml) for work. TOML (Tom’s Obvious, Minimal
Language) is used for kernel module/exploit description.

.out-of-tree.toml is mandatory, you need to have in the current directory (usually, it’s a project of kernel
module/exploit) or use the --path flag.

1.1.1 Files

All data is stored in ~/.out-of-tree/.

• db.sqlite contains logs related to run with out-of-tree pew, debug mode (out-of-tree debug) is not
store any data.

• images used for filesystem images (rootfs images that used for qemu -hda ...) that can be generated with
the tools/qemu-*-img/....

• kernels stores all kernel vmlinuz/initrd/config/... files that generated previously with a some
Docker magic.

• kernels.toml contains metadata for generated kernels. It’s not supposed to be edited by hands.

3

out-of-tree Documentation, Release latest

• kernels.user.toml is default path for custom kernels definition.

• Ubuntu (or Centos/Debian/. . .) is the Dockerfiles tree (DistroName/DistroVersion/Dockerfile). Each Dockerfile
contains a base layer and incrementally updated list of kernels that must be installed.

1.1.2 Overview

out-of-tree creating debugging environment based on defined kernels:

$ out-of-tree debug --kernel 'Ubuntu:4.15.0-58-generic'
[*] KASLR SMEP SMAP
[*] gdb is listening on tcp::1234
[*] build result copied to /tmp/exploit

ssh -o StrictHostKeyChecking=no -p 29308 root@127.133.45.236
gdb /usr/lib/debug/boot/vmlinux-4.15.0-58-generic -ex 'target remote tcp::1234'

out-of-tree> help
help : print this help message
log : print qemu log
clog : print qemu log and cleanup buffer
cleanup : cleanup qemu log buffer
ssh : print arguments to ssh command
quit : quit
out-of-tree>

out-of-tree uses three stages for automated runs:

• Build

– Inside the docker container (default).

– Binary version (de facto skip stage).

– On host.

• Run

– Insmod for the kernel module.

– This step is skipped for exploits.

• Test

– Run the test.sh script on the target machine.

– Test script is run from root for the kernel module.

– Test script is run from user for the kernel exploit.

– Test script for the kernel module is fully custom (only return value is checked).

– Test script for the kernel exploit receives two parameters:

* Path to exploit

* Path to file that must be created with root privileges.

– If there’s no test.sh script then default (echo touch FILE | exploit) one is used.

4 Chapter 1. Contents

out-of-tree Documentation, Release latest

1.1.3 Security

out-of-tree is not supposed to be used on multi-user systems or with an untrusted input.

Meanwhile, all modern hypervisors are supporting nested virtualization, which means you can use it for isolating
out-of-tree if you want to work with an untrusted input (e.g. with a mass-scale testing public proofs-of-concept).

1.2 Installation (from source)

1.3 OS/Distro-specific

1.3.1 Ubuntu

Install dependencies:

$ sudo snap install go --classic
$ sudo snap install docker
$ sudo apt install qemu-system-x86 build-essential gdb

1.3.2 macOS

Install dependencies:

$ brew install go qemu
$ brew cask install docker

1.3.3 NixOS

There’s a minimal configuration that you need to apply:

#!nix
{ config, pkgs, ... }:
{

virtualisation.docker.enable = true;
virtualisation.libvirtd.enable = true;
environment.systemPackages = with pkgs; [
go git

];
}

1.3.4 Gentoo

Install dependencies:

$ sudo emerge app-emulation/qemu app-emulation/docker dev-lang/go

1.2. Installation (from source) 5

out-of-tree Documentation, Release latest

1.3.5 Fedora

Install dependencies:

$ sudo dnf install go qemu moby-engine

1.4 Common

Setup Go environment:

$ echo 'export GOPATH=$HOME' >> ~/.bashrc
$ echo 'export PATH=$PATH:$HOME/bin' >> ~/.bashrc
$ source ~/.bashrc

Build out-of-tree:

$ go get -u code.dumpstack.io/tools/out-of-tree

Note: On a GNU/Linux you need to add your user to docker group if you want to use out-of-tree without sudo. Note
that this has a serious security implications. Check Docker documentation for more information.

Test that everything works:

$ cd $GOPATH/src/code.dumpstack.io/tools/out-of-tree/examples/kernel-exploit
$ out-of-tree kernel autogen --max=1
$ out-of-tree pew --max=1

Enjoy!

6 Chapter 1. Contents

	Contents
	Introduction
	Installation (from source)
	OS/Distro-specific
	Common

